海考网>学科考试>数学>初二数学知识点

初二数学知识点

时间:2024-08-18 12:24:36 数学 我要投稿

初二数学知识点【锦集15篇】

  在平凡的学习生活中,是不是听到知识点,就立刻清醒了?知识点也可以通俗的理解为重要的内容。掌握知识点有助于大家更好的学习。以下是小编整理的初二数学知识点,仅供参考,欢迎大家阅读。

初二数学知识点【锦集15篇】

初二数学知识点1

  【用坐标表示地理位置】

  ①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  ②根据具体问题确定单位长度;

  ③在坐标平面内画出这些点,写出各点的坐标和各个地点的`名称.

  【用坐标表示平移】

  1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。平移后图形的位置改变,形状、大小不变。

  2.在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

  3.图形平移与点的坐标变化之间的关系:

  (1)左、右平移:

  原图形上的点(x、y),向右平移a个单位(x+a,y);

  原图形上的点(x、y),向左平移a个单位(x-a,y);

  (2)上、下平移:

  原图形上的点(x、y),向上平移a个单位(x,y+b);

  原图形上的点(x、y),向下平移a个单位(x,y-b)。

初二数学知识点2

  第一章分式

  1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2、分式的运算

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

  3、整数指数幂的加减乘除法

  4、分式方程及其解法

  第二章反比例函数

  1、反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2、反比例函数在实际问题中的应用

  第三章勾股定理

  1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

  第四章四边形

  1、平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2、特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3、梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

  第五章数据的分析

  加权平均数、中位数、众数、极差、方差

  初中八年级数学学习方法

  一、预习的方法

  (1)看书要动笔。(不动笔墨不读书)

  ①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

  ②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

  ③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

  ④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

  (2)确定听课要点。把握自己要解决的主要问题,以提高听课的效率。

  二、听课的方法。

  (1)盯住老师。除在预习中已明确的任务,做到有针对性地解决符合自己的.问题外,还要把自己思维活动紧紧跟上教师的讲课,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。公式、定理是如何运用的。许多数学家都十分强调“应该不只看到书面上,而且还要看到书背后的东西。”

  (2)敢于发言。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,如有疑问或有新的问题,要勇于提出自己的看法。

  (3)记笔记。听课时要把老师讲课的要点、补充的内容与方法记下。

  三、复习方法。

  (1)复习笔记和卷纸。对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加宽等。要勤于复习(知识点、典型题等),经常看,反复看——这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。

  (2)适量做题。准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。

  (3)大胆质疑,增强学习的主动性。要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。

初二数学知识点3

  1、命题,定理,推论的定义

  2、证明一个命题是假命题的方法———反证法

  3、证明一个定理的方法

  4、三角形全等的证明方法

  5、平行四边形,矩形,菱形,正方形的`性质和判定方法

  6、勾股定理的证明方法

  7、等腰梯形的性质和判定方法

初二数学知识点4

  一、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式。

  能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

  由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

  不等式组的`解集:一元一次不等式组各个不等式的解集的公共部分。

  等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

  二、不等式的基本性质

  1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)

  性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

  性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac

  不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c

  三、解不等式的步骤:

  1、去分母;

  2、去括号;

  3、移项合并同类项;

  4、系数化为1。

  四、解不等式组的步骤:

  1、解出不等式的解集

  2、在同一数轴表示不等式的解集。

  五、列一元一次不等式组解实际问题的一般步骤:

  (1)审题;

  (2)设未知数,找(不等量)关系式;

  (3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

  六、常考题型:

  1、求4x-67x-12的非负数解.

  2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

  3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

初二数学知识点5

  一、平均数、中位数、众数的概念

  1.平均数

  平均数是指在一组数据中所有数据之和再除以数据的个数。

  2.中位数

  中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。

  3.众数

  众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。

  二、平均数、中位数、众数的区别

  1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。

  2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。

  3.中位数仅与数据的排列有关,一般来说,部分数据的`变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。

  三、平均数、中位数、众数的联系

  众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。

初二数学知识点6

  公式特征

  (一)学会推导公式:

  (这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;

  (二)学会用文字概述公式的含义:

  两数和(或差)的平方,等于它们的`平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

  (三)这两个公式的结构特征:

  1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;

  2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内).

  3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

  (四)两个公式的统一:

  两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

  这一章节的难点是对公式特征的理解,如对公式中积的一次项系数的理解。

初二数学知识点7

  逆定理的内容:

  如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

  说明:

  (1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

  2.利用勾股定理的.逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定最大边;

  (2)算出最大边的平方与另两边的平方和;

  (3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

初二数学知识点8

  必备的初二上册数学第六章知识点:平均数

  平均数问题:平均数是等分除法的发展。

  解题关键:在于确定总数量和与之相对应的`总份数。

  算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

  加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

  数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

  差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

  数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

初二数学知识点9

  (1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

  (2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式。

  (3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的。

  (4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

  (5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式。

  (6)如果多项式的第一项的系数是负的,一般要提出“—”号,使括号内的第一项的系数是正的,在提出“—”号时,多项式的各项都要变号。

  (7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式。

  (8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

  (9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2—b2=(a+b)(a—b)

  (10)具备什么特征的两项式能用平方差公式分解因式

  ①系数能平方,(指的系数是完全平方数)

  ②字母指数要成双,(指的指数是偶数)

  ③两项符号相反。(指的两项一正号一负号)

  (11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么。

  (l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。字母表达式:a2±2ab+b2=(a±b)2

  (13)完全平方公式的`特点:

  ①它是一个三项式。

  ②其中有两项是某两数的平方和。

  ③第三项是这两数积的正二倍或负二倍。

  ④具备以上三方面的特点以后,就等于这两数和(或者差)的平方。

  (14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和)。

  (15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式。

  (16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式。

  (17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提。

  (18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式。

  (19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键。

初二数学知识点10

  一次函数

  1、函数概念:

  在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.

  2、一次函数和正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

  说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.

  (2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.

  (3)当b=0,k≠0时,y=b仍是一次函数.

  (4)当b=0,k=0时,它不是一次函数.

  3、一次函数的图象(三步画图象)

  由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.

  由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

  4、一次函数y=kx+b(k,b为常数,k≠0)的性质(正比例函数的性质略)

  (1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;

  ②k﹤O时,y的值随x值的增大而减小.

  (2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);

  (3)b的正、负决定直线与y轴交点的位置;

  ①当b>0时,直线与y轴交于正半轴上;

  ②当b<0时,直线与y轴交于负半轴上;

  ③当b=0时,直线经过原点,是正比例函数.

  (4)由于k,b的符号不同,直线所经过的象限也不同;

  5、确定正比例函数及一次函数表达式的条件

  (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的.值或一个点)就可求得k的值.

  (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

  6、待定系数法

  先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

  7、用待定系数法确定一次函数表达式的一般步骤

  (1)设函数表达式为y=kx+b;

  (2)将已知点的坐标代入函数表达式,解方程(组);

  (3)求出k与b的值,得到函数表达式.

  8、本章思想方法

  (1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。

  (2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。

初二数学知识点11

  分式除法法则

  分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  提示:

  (1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,然后再相乘;

  (2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变

  (3)分式的除法可以转化为分式的乘法运算;

  (4)分式的乘除混合运算统一为乘法运算。

  ①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;

  ②分式的`乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;

  ③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。

初二数学知识点12

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法:用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,如果ykxb(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数ykxb中的b为0时,ykx(k为常数,k0)这时,y叫做x的正比例函数。2、一次函数的图像

  所有一次函数的图像都是一条直线。3、一次函数、正比例函数图像的主要特征:

  一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。(如下图)4.正比例函数的性质

  一般地,正比例函数ykx有下列性质:

  (1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k确定一个正比例函数,就是要确定正比例函数定义式ykx(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式ykxb(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

  k的符号b的符号函数图像yb>00xyb00xyb0K

  四边形

  1.四边形的内角和与外角和定理:

  (1)四边形的内角和等于360°;

  (2)四边形的外角和等于360°.

  2.多边形的内角和与外角和定理:

  (1)n边形的内角和等于(n-2)180°;

  (2)任意多边形的外角和等于360°.

  3.平行四边形的性质:

  (1)两组对边分别平行;

  (2)两组对边分别相等;是平行四边形

  (3)两组对角分别相等;

  (4)对角线互相平分;

  (5)邻角互补(.DOCADBCA4D32C1B因为ABCDAB

  4.平行四边形的判定:

  (1)两组对边分别平行

  (2)两组对边分别相等

  (3)两组对角分别相等

  (4)一组对边平行且相等

  (5)对角线互相平分ABCD是平行四边形DOC.AB

  5.矩形的性质:

  (1)具有平行四边形的所是矩形

  (;2)四个角都是直角

  (3)对角线相等.有通性;DCO因为ABCDADBC

  6.矩形的判定:

  (1)平行四边形一个直角边形DCAB

  (2)三个角都是直角

  (3)对角线相等的平行四四边形ABCD是矩形.ADOBCAB

  7.菱形的性质:因为ABCD是菱形

  (1)具有平行四边形的所

  (2)四个边都相等;

  (3)对角线垂直且平分对有通性;ADO角.CB

  8.菱形的判定:

  (1)平行四边形

  (2)四个边都相等

  (3)对角线垂直的平行四边形一组邻边等四边形四边形DABCD是菱形.AOC

  9.正方形的性质:因为ABCD是正方形

  (1)具有平行四边形的所

  (2)四个边都相等,四个

  (3)对角线相等垂直且平DCB有通性;角都是直角;分对角.DCO(1)

  10.正方形的判定:

  (1)平行四边形一组邻边等ABAB(2)(3)

  (2)菱形一个直角

  (3)矩形一组邻边等一个直角四边形ABCD是正方形.

  (3)∵ABCD是矩形DC

  又∵AD=AB

  ∴四边形ABCD是正方形AB

  11.等腰梯形的性质:

  (1)两底平行,两腰相等;是等腰梯形

  (2)同一底上的底角相等

  (3)对角线相等AD因为ABCD;BOC

  12.等腰梯形的判定:

  (1)梯形两腰相等

  (2)梯形底角相等

  (3)梯形对角线相等四边形ABCD是等腰梯形D

  (3)∵ABCD是梯形且AD∥BCABOC

  ∵AC=BD

  ∴ABCD四边形是等腰梯形A

  14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.BEDDECCFBA

  一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四

  边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二定理:中心对称的有关定理

  ※1.关于中心对称的两个图形是全等形.

  ※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于

  这一点对称.三公式:

  1.S菱形=12ab=ch.(a、b为菱形的对角线,c为菱形的边长,h为c边上的高)

  2.S平行四边形=ah.a为平行四边形的边,h为a上的高)

  3.S梯形=

  常识:

  ※1.若n是多边形的边数,则对角线条数公式是:

  n(n3)212(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)

  矩形正方形菱形

  2.规则图形折叠一般“出一对全等,一对相似”.平行四边形

  3.如图:平行四边形、矩形、菱形、正方形的从属关系.

  4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形;仅是中心对称图形的有:平行四边形;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆.注意:线段有两条对称轴.

  ※5.梯形中常见的辅助线:

  ADADADAD中点E中点BECBCBEFCBCFEADADADAFDEF中点中点EBCEBCBCBGC

  ※平移与旋转旋转

  1.旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

  2.旋转的性质:旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。

  中心对称

  1.中心对称的.定义:如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。

  2.中心对称图形的定义:如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。

  3.中心对称的性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。

  轴对称

  1.轴对称的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2.轴对称图形的性质:

  ①角的平分线上的点到这个角的两边的距离相等。

  ②线段垂直平分线上的点到这条线段两个端点的距离相等。

  ③等腰三角形的“三线合一”。

  3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。图形变换图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。

  一元二次方程

  1、一元二次方程:

  ①概念:只含有一个未知数,且可以化为ax2bxc0(a,b,c为常数,且a0)的整式方程叫做一元二次方程。

  ax2bxc0是一元二次方程的一般形式。其中,ax、bx、c分别叫做一元二次方程

  2的二次项、一次项、常数项;a、b分别叫做一元二次方程的二次项、一次项的系数。(强调:项和系数要包括前面的符号)构成一元二次方程的条件:

  (1)整式方程;

  (2)只含有一个未知数;

  (3)二次项系数不能为0;

  (4)未知数的最高次数为

  2.②注意事项:

  (1)二次项系数a0是一般形式的重要组成部分。

  (2)二次项、一次项和常数项都是在一般形式下定义的,判断各项系数时,必须先将方程方程化为一般形式。

  (3)任何一个一元二次方程均可经过整理(去括号、移项、合并同类项)均可化为一般形式。

  2、一元二次方程的解法

  ⑴直接开平方法解一元二次方程:

  ①如xm(m0)的方程都可以用开平方的方法求出它的解,这种解法叫做直接开平方法②利用直接开平方法所解的一元二次方程的结构特点:经过整理、变形后得到等号左边是一个完全平方式,右边是一个非负数;

  ③理解直接开平方法的理论依据是平方根的定义。⑵用配方解一元二次方程:

  ①把一个二次三项式组成完全平方式的变形过程,叫做配方,用配方法求一元二次方程的解的方法叫做配方法。

  ②配方法解一元二次方程是以配方为手段,以直接开平方为基础的一种解一元二次方程的基本方法。

  ③用配方法解一元二次方程的步骤:

  ㈠二次项系数化为1:方程两边都除以二次项系数;㈡移项:方程左边为二次项和一次项,右边为常数项;

  ㈢配方:方成左右两边同时加上一次项系数一半的平方,使方程左边变成一个完全平方式,右边是一个常数;

  ㈣求解:如果右边常数是非负数,就用直接开平方法解一元二次方程。

  ⑶用公式法解一元二次方程:

  ①方程axbxc0(a0)的求根公式:x求根公式解一元二次方程的方法叫公式法。②利用求根公式解一元二次方程的步骤:

  ㈠把方程整理为一般形式ax2bxc0(a0),确定a,b,c的值;㈡计算b24ac的值;

  ㈢当b24ac0时,把a,b和b24ac的值代入求根公式计算,从而求出方程的解。③求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用④公式法是解一元二次方程ax2bxc0(a0)的一般解法⑷用因式分解法解一元二次方程

  ①利用因式分解的方法求出一元二次方程的解,这种解方程的方法叫因式分解法

  ②因式分解法的理论依据:两个因式的积等于0,那么这两个因式中至少有一个等于零,即

  AB0A0或B0。

  2bb4ac2a2(b4ac0),利用

  2③用因式分解法所解的一元二次方程的结构特点:等号一边的代数式可以做因式分解,另一边为0.

  ④利用因式分解法解一元二次方程的步骤:㈠将方程的右边化为一;

  ㈡将方程的左边分解为两个一次因式乘积的形式;㈢令两个因式分别为0,得到两个一元一次方程;

  ㈣分别解两个一元一次方程,它们的解就是原方程的解。

  3、一元二次方程解法的顺序:

  先特殊,后一般,先考虑是否用直接开平方法和因式分解法解,不能用这两种方法时,再用公式法和配方法。当二次项系数为一,一次项系数为偶数时,用配方法方便。

  4、根的判别式

  把b4ac叫做一元二次根的判别式,记作△=b4ac,axbxc0(a0),若方程有两个不相等的实数根△>0;有两个相等的实数根△=0没有实数根△<0

  有两个实数根△0(此时两根可能等,也可能不等)。

  5、一元二次方程的应用

  列方程解应用题,应透彻理解题意,寻找等量关系。列方程时,要注意列出的方程必须满足以下三个条件:

  ⑴方程左右两边表示同类量;

  ⑵方程左右两边的同类量的单位一样;⑶方程两边的数值相等。※增长率问题公式

  2增长后的数=基数(1+增长率)n(n指增长的次数)降低后的数=基数(1-增长率)n(n指降低的次数)

  ※长方体、正方体体积公式

  V长方体长宽高

  V正方体(边长)

  3※根据题的实际意义对方程的根进行取舍。

  方差与频数分布

  知识框架图数极差据的方差用计算器计算波标准差比较事物的有关性质动方用样本估计总体的有关特征

  差频数与数频率频据数的分分频数分布表布布频数分布图1n1n

  数据的波动

  一、极差

  1、一组数据中的最大值减去最小值所得的差,叫做这组数据的极差;

  2、极差=数据中的最大值数据中的最小值。

  二、方差

  1、在一组数据x1,x2,,x3,,xn中,各数据与他们的平均数x的差的平方的平均数,叫做这

  2组数据的方差,常用s来表示,即:s21n[(x1x)(x2x)(xnx)];

  2222、方差的三种公式:基本公式:s化简公式:s22[(x1x)(x2x)(xnx)];[(x12222

  x2xn)nx]

  2222化简公式的变形公式:s"1n(x1x2xn)x

  ""222222"3、设化简后的新数据组x1,x2,xn的方差为s,设x1,x2,,x3,,xn的方差为s(其中,则s"s2;xixia,i1,2,n,a为常数)

  4、方差的作用:用于表述一组数据波动的大小,方差越小,该数据波动越小,越稳定。

  三、标准差

  1、方差的算数平方根叫做这组数据的标准差,即:

  "21nx1xx2xxnx222;

  2、标准差用于描述一组数据波动的大小;3、标准差的单位与原数据的单位相同。

  四、方差与标准差的关系

  1、s;

  22、与s2的作用相同、单位不同。

  五、频数分布与频数分布图1、数据的分组整理组限、组距和组数:

  把一套数据分成若干个小组,累计各小组的数据个数。期中每个分数段是一个“组区间”,分数段两端的数值是“组限”,分数段的最大值与最小值的差是“组距”,分数段的个数是组数”.

  2、频数、频率与频数分布表、频数分布图①每个小组的数据的个称为这组数据的频数;

  ②频率:每个小组的频数与数据总个数的比值称为这组的频率;

  ③频率的计算公式:

  每组的频率=这组的频数/数据的总个数

  ④各小组的频数之和等于数据总数;各小组的频数之和等于1.

初二数学知识点13

  第三章 图形的平移和旋转

  1、图形的平移

  ① 在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小

  ② 一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等

  ③ 一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的

  2、图形的旋转

  ① 在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小

  ② 一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等

  3、中心对称

  ① 如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心

  ② 成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分

  ③ 把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心

  4、简单的图案设计

  第四章 因式分解

  1、因式分解

  ① 把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式

  2、提公因式法

  ① 多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式

  ② 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。从而将多项式化成两个因式乘积的形式。这种因式分解的`方法叫做提公因式法

  3、公式法

  ① A2-b2=(a+b)(a-b)

  ② 当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解

  ③ a2+2ab+b2=(a+b)2 。a2-2ab+b2=(a-b)2

  ④ 根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解叫做公式法

  第十二章全等三角形

  一、知识框架:

  二、知识概念:

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形.

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相重合的边叫做对应边.

  ⑸对应角:全等三角形中互相重合的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边(SSS):三边对应相等的两个三角形全等.

  ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.

  ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.

  ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.

  ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.

  4.角平分线:

  ⑴画法:

  ⑵性质定理:角平分线上的点到角的两边的距离相等.

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

  5.证明的基本方法:

  ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证.

  ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

  第十三章轴对称

  一、知识框架:

  二、知识概念:

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.

  ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形.

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.

  ②对称的图形都全等.

  ⑵线段垂直平分线的性质:

  ①线段垂直平分线上的点与这条线段两个端点的距离相等.

  ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

  ⑶关于坐标轴对称的点的坐标性质

  ①点P(x,y)关于x轴对称的点的坐标为P'(x,y).

  ②点P(x,y)关于y轴对称的点的坐标为P"(x,y).

  ⑷等腰三角形的性质:

  ①等腰三角形两腰相等.

  ②等腰三角形两底角相等(等边对等角).

  ③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).

  ⑸等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).

  3.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

  ⑵等边三角形的判定:

  ①三条边都相等的三角形是等边三角形.

  ②三个角都相等的三角形是等边三角形.

  ③有一个角是60°的等腰三角形是等边三角形.

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

初二数学知识点14

  第十二章全等三角形

  一、全等三角形

  1.定义:能够完全重合的两个三角形叫做全等三角形。

  理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全

  等形;③三角形全等不因位置发生变化而改变。

  2、全等三角形有哪些性质

  (1)全等三角形的对应边相等、对应角相等。

  理解:

  ①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

  ②对应角的对边为对应边,对应边对

  的角为对应角。

  (2)全等三角形的周长相等、面积相等。

  (3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

  3、全等三角形的判定

  边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

  边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

  1、性质:角的平分线上的点到角的`两边的距离相等.

  2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

  注意:三角形的三条角平分线交于一点,这个点到三角形三边的距离相等。

  三、学习全等三角形应注意以下几个问题:

  (1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

  (2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

  (3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

  (4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”

  (5)截长补短法证三角形全等。

初二数学知识点15

  分式方程

  一、理解定义

  1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

  2、解分式方程的思路是:

  (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

  (2)解这个整式方程。

  (3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

  (4)写出原方程的根。

  “一化二解三检验四总结”

  3、增根:分式方程的增根必须满足两个条件:

  (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。

  4、分式方程的解法:

  (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

  (3)解整式方程;(4)验根;

  注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

  分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

  5、分式方程解实际问题

  步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

  二、轴对称图形:

  一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

  1、轴对称:

  两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

  2、轴对称图形与轴对称的区别与联系:

  (1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

  (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

  3、轴对称的性质:

  (1)成轴对称的两个图形全等。

  (2)对称轴与连结“对应点的线段”垂直。

  (3)对应点到对称轴的距离相等。

  (4)对应点的连线互相平行。

  三、用坐标表示轴对称

  1、点(x,y)关于x轴对称的点的坐标为(x,-y);

  2、点(x,y)关于y轴对称的点的坐标为(-x,y);

  3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

  四、关于坐标轴夹角平分线对称

  点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

  点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)

  (一)运用公式法:

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

  1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2-2ab+b2 =(a-b)2

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

  (2)完全平方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的平方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

  我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)??(a +b).

  这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

  (六)提公因式法

  1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

  2.运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

  1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.

  2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ①列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数.

  3.将原多项式分解成(x+q)(x+p)的形式.

  (七)分式的乘除法

  1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

  2.分式进行约分的目的是要把这个分式化为最简分式.

  3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

  4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

  5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

  6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

  (八)分数的加减法

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

  4.通分的依据:分式的基本性质.

  5.通分的关键:确定几个分式的公分母.

  通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

  6.类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

  9.作为最后结果,如果是分式则应该是最简分式.

  (九)含有字母系数的一元一次方程

  1.含有字母系数的一元一次方程

  引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

  在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

  10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

  11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

  12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

  第十一章全等三角形复习

  一、全等三角形

  1.定义:能够完全重合的两个三角形叫做全等三角形。

  理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

  2、全等三角形有哪些性质

  (1)全等三角形的对应边相等、对应角相等。

  理解:①长边对长边,短边对短边;角对角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

  (2)全等三角形的周长相等、面积相等。

  (3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

  3、全等三角形的判定

  边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

  1、性质:角的平分线上的点到角的两边的距离相等.

  2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

  三、学习全等三角形应注意以下几个问题:

  (1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

  (2表示两个三角形全等时,表示对应顶点的'字母要写在对应的位置上;

  (3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

  (4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”

  (5)截长补短法证三角形全等。

  第十二章轴对称

  一、轴对称图形

  1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线

  4.轴对称与轴对称图形的性质

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  ⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  二、线段的垂直平分线

  1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

  2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等

  3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上

  三、用坐标表示轴对称小结:

  1.在平面直角坐标系中

  ①关于x轴对称的点横坐标相等,纵坐标互为相反数;

  ②关于y轴对称的点横坐标互为相反数,纵坐标相等;

  ③关于原点对称的点横坐标和纵坐标互为相反数;

  ④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

  ⑤关于与直线X=C或Y=C对称的坐标

  点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.

  点(x, y)关于y轴对称的点的坐标为___(-x, y)___.

  2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

  四、(等腰三角形)知识点回顾

  平方差公式:

  平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面。②两条数轴。③互相垂直。④原点重合。

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  等边三角形的性质:

  等边三角形的三个角都相等,并且每一个角都等于600。

  等边三角形的判定:

  ①三个角都相等的三角形是等边三角形。

  ②有一个角是600的等腰三角形是等边三角形。

  在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

  等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  (2)等腰三角形的其他性质:

  ①等腰直角三角形的两个底角相等且等于45°

  ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  ③等腰三角形的三边关系:设腰长为a,底边长为b,则

  ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

  等腰三角形的判定

  等腰三角形的判定定理及推论:

  定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

  推论1:三个角都相等的三角形是等边三角形

  推论2:有一个角是60°的等腰三角形是等边三角形。

  推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

【初二数学知识点】相关文章:

初二数学必备的知识点01-31

初二数学下册知识点10-17

初二数学知识点05-23

初二的数学知识点12-18

初二数学知识点12-09

初二数学函数知识点12-22

初二数学上册知识点10-18

初二数学下册知识点归纳03-07

[精选]初二数学下册知识点归纳05-03

初二的数学知识点[优选]02-13